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CHAPTER 1.

Introduction

Functional Programming (FP)B37 is an alternative to conventional imperative pro-
gramming languages. This thesis describes an FP interpreter implementation. Superficially,
FP appears to be a simple, but very inefficient language. Its simplicity, however, allows it to
be interpreted quickly. Much of the inefficiency can be removed by simple interpreter tecﬁ-

niques.

This thesis details the design of the Illinois Functional Programming (IFP) interpreter,
an interactive functional programming implementation which runs under both MS-DOS and
UNIX.! The IFP interplfecer allows functions to be created, executed, and debugged in an
environment very similar to UNIX. [FP’s speed is competitive with other interpreted

languages such as BASIC.

"MS-DOS and UNIX are trademarks of the Microsoft Corporation and Bell Laboratories respectively.




CHAPTER 2.

Background

“Look,” said Roark. “The famous flutings on the famous columns -~what are they there for?
To hide the joints in wood—when columns were made of wood, only these aren’t, they're
marble. The triglyphs, what are they? Wood. Wooden beams, the way they had to be laid
when people began to build wooden shacks. Your Greeks took marble and they made copies
of their wooden structures out of it, because others had done it that way. Then your masters
of the Renaissance came along and made copies in plaster of copies in marble of copies in
wood. Now here we are, making copies in steel and concrete of copies in plaster of copies in
marble of copies in wood. Why?”’

- Ayn Rand, The Fountainhead

2.1. Origins

Conventional computer languages descend directly from machine language. Each
language fe.ature traces its ancestry to a machine level counterpart. Variables evolved from
storage locations; GOTO and IF statements mimic jump and branch instructions. Though
these abstractions of machine language free the programmer from machine- dependent detail,

they still force the programmer to work on the same word-at-a—time level as the machine.

In his 1978 Turing Award Lecture, John Backus presented a critique of conventional

languages and an alternative: functional programming (FP).! FP programs have neither the
control flow nor variables of conventional languages. Instead programs are directly con-

structed from smaller programs.

Berkeley UNIX has an FP implementationB3d83, Berkeley FP follows Backus’ FP

definition closely, except for minor character set changes. The Berkeley FP interpreter is

'From here on, FP will denote any functional programming employing the combinator style of Backus’ FP.
Backus’ FP will always be referenced explicitly as such.

-/) - - —



written in Franz LISP. Functions are translated into lisp functions which are then inter-
preted by the LISP interpreter. Alternatively, the LISP functions may be compiled into

machine code.

The Berkeley FP is slow; a Berkeley FP program may run as much as 20 times slower
than its BASIC counterpart. The interpreter carry’Q the unnecessary overhead of Franz LISP.
The simplicity of FP is lost when translated into LISP. For example, FP has a trivial calling
convention: every function has a single anonymous argument. [n contrast, the LISP transla-
tion uses lambda-bindings with muitiple arguments, which are more compiex and time-

consuming. A simple language should be evaluated by simple methods.

2.2. Goals

Most programming languages are extremely complex, thus making mere implementation
complex and difficult, much more so an efficient implementation. FP is a much simpler

language, so more effort couid be made towards an efficient and friendly implementation.

There were three general criteria for thé interpreter. First, it should include debugging
features such as a trace mechanism and domain error messages. Second, the interpreter
should run on generally available computer systems. Finally, it should run quickly. Most
available computers are of the Von-Neumann model, so the interpreter must run efficiently

within the constraints of the “Von-Neumann Bottleneck’’.

The interpreter was specified to have the following features:
1. Define new FP functions.
2. Evaluate an FP application.

3. Trace the evaluation of an application.




4. Show the reasons (back-tracej for an undefined result.
The ficst two features simply implement Backus’ FP system. The tracing feature was
adopted from Berkeley FP. The last feature was specified from experience with Berkeley FP.
Errors in FP programs result in a undefined value which propagates to the final output.
Within Berkeley FP, there is no reporting of why an error occurred, so debugging programs
is extremely difficult. Though the error reporting is not pure FP (the error message is a side

effect!), it is of great practical value.

o o ym Lo W



CHAPTER 3.

Language

This chapter gives an overview of the [FP language. The reader is referred to the user’s

manualRo%85 for the finer details such as where to put the semicolons.

The IFP domain includes objects, functions, and program forming operations (PFO).
PFO are sometimes called functional forms. They correspond to data. procedures, and con-

trol structures in conventional languages respectively.

3.1. Objects

The objects of IFP represent data. Objects may be atoms, sequences, or bottom.
Atoms are scalar data such as numbers, boolean values, and strings. A sequence corresponds

to LISP’s list. Bottom is neither atom nor sequence, it denotes an undefined result.

3.1.1. Bottom

The simplest [FP object is bottom, which is written in [FP as ““?”’. Boitom represents
an undefined value, such as the result of division by zero. Like Backus’ FP, I[FP has the
bottom preserving property. The bottom preserving property requires that application of a
function to an undefined input results in an undefined output. A corollary is that any data

a9

structure containing is itself equal to “?”’.




3.1.2. Atoms

In Backus’' FP there is only one type of atom, the string. Some strings represent
numbers or boolean values. Arithmetic functions could be applied to numeric strings, as in
awkAho84 but there are both theoretic and practical reasons for not doing this. On the prac-
tical side, arithmetic on the string representations of numbers is slow on most machines. A
clever interpreter, however, could store numeric strings internally as integers or floating point

numbers.

There would still be a theoretic problem. Consider the string ‘“0.000"”. If stored as a
floating point number, it would be indistinguishable from the string “0.0””. When treated as
strings we wish to distinguish between the two, when treated as numbers we want the two
strings to be considered equal. We could have both "string equality” and "numeric equality”
tests, but this would seem unnecessarily complex. The [FP atomic domain therefore contains
the mutually exclusive types of character strings, integers, reals, and boolean values. The
[FP type partitioning is shown in figure 1. The boolean constants “true’” and “‘false’” are

denoted ¢ and f respectively.

3.1.3. Sequences

An [FP sequence is a tuple of objects delimited by angle brackets. Below are some
sequences:
<a b ¢>
<31415
<>
<plus <a b> 2>

In Backus’ FP, empty sequences are also atoms; in IFP empty sequences are not atoms. The

choice is somewhat arbitrary, it mostly emphasizes a viewpoint. In LISP, the empty list is an




Objects

Atoms

Booleans

Reals

Integers

Strings

Sequences

Figure 1

atom since it is a leaf of LISP’s tree structures. [n [FP, the sequences are more like arrays, so

the empty list is treated as an empty array.

3.2. Functions

IFP functions map objects into objects. They are true functions in the mathematical

sense in that the mapping is injective. IFP functions preserve referential transparency

that is the identity:

Ten76‘




f(z)=f(=z)

always holds. IFP functions are strict and bottom preservingB3<78, We denote the applica-

tion of a function to an object with a colon, that is:*

z:f — [(z)
The terminology should be clarified at this point. The string denoting the application of
function f to object z is called an expression. Expressions are distinct from functions and

objects.

3.2.1. Primitive Functions

Primitive functions are built into the interpreter. Since they are too numerous to all be
listed here, only those used in this thesis will be described. Most mathematical functions
have their usual names in [FP. For example, the sine and cosine functions are sin and cos.
Dyvadic functions such as addition expect a two-element sequence (pair) as input. For exam-
ple:

<3 4> : + - 7

Muitiplication and division are denoted by “*’’ and “%" respectively.

The identity function td returns its argument.

ziid=1z

The null function tests if a sequence is empty.

<:tnull=t<zy, - >mull = f

The apndl and apndr functions append an element to the left and right sides of a sequence

respectively:

'To minimize confusion, we use two different symbols for equality. The symbol = indicates that the left and
right sides are both [FP expressions. The symbol — indicates that the left side is [FP and the right side is stan-
dard mathematical notation.




<z, <Yyuyp "' Y>> apndl E SR TR TRERE -

KLZHEg ' " Ty >y > tapndr = KT Ty " Ty >

The ¢l and ¢ir drop the first or last element from a sequence:

<THxy trza>tl= <2y, 000 2,>

<ZTyZgy " Ty i tlr = <z ,Zpy  THo >

The cat function catenates sequences:

<KZiZ g 21 >i<T21sZ2g " T2a, >0 " <Tm 0B T T, D> P CAL =

STz """ TiapZonTazr T T2ay T ImiTmr T Tmn,

There are also structural functionsB37® which replace the loop and subscript structures

of conventional languages. The three principle structural functions are distl, distr and trans,

which are defined below:

<z, <Yp¥ar ° Yo o> distl = <<Lz,y ><T,y> 0 <z, Y>>

LTy yZgy * 't Ty yy >t distr = <<z Y O<THY> 0 <Tpy, Y>>

<<zyp T2 "t Zia2 ' Kz, Iy 7t ITm?
<z T " T2 <zi2 Tz ' Tmp>
: trans =
SZmi Zmz 7" Tmal> <ZTin T " Ima >

The heavy use of structural functions by [FP programs affects the interpreter design. As
will be described in Chapters 4 and 6, the structural functions diminish interpretive overhead

at the expense of creating many temporary storage structures (sequences) which must be allo-

cated and deallocated quickly.

3.2.2. Function Organisation

Experience with Berkeley FP indicated that a single flat name space was a serious incon-

venience, since the user would have no way to group functions in a logical manner. Therefore
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[FP adopted a tree-structure system directly analogous to UNIX's file structure. Each func-
tion exists in module which corresponds to a UNIX directory. Functions are named in the
same manner as UNIX files, either by a relative or absolute pathname. Furthermore, the
user can establisl"x the equivalent of symbolic links via an import file in each module. The
hierarchical function organization is syntactic sugar. All pathnames are expanded to absolute

form when parsed, so the [FP name space is lexically scoped.

Figure 2 shows part of a typical function hierarchy. The root node is labeled “r’’. The
function ‘““+" belongs to the module ‘“‘arith’’, which contains arithmetic functions. The

module “‘arith” in turn is a subdirectory of “‘math’”. The addition function would be refer-

enced by *‘/math/arith/+"". If it were imported into a given module, then *“+’ would suffice.

Figure 2
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3.2.3. User Defined Functions

The user defines functions by creating function definition files. Each file defines a single
function, and has the form:
DEF name AS function;
where name is a string and function is an [FP function, which is usually other functions com-
bined by program forming operations. The definition may be freely formatted and occupy
more than one line. For example, a function which doubles its input can be written:

DEF' Double AS
(1d,1d] | +;

(332

(The meaning of the brackets and “‘|”’ is explained in the next section.)

3.3. Program Forming Operations

In conventional languages, functions are combined by storing intermediate results in
variables. In IFP, functions are combined by “program forming operations” (PFO). Each
component function is a parameter to the PFO. Like its component functions, each con-
structed function has a single input and output. Higher level functions can be built from the
constructed functions in the same manner. The language APLIV®62 provides a few PFO’s

(called operators), but their parameters are restricted to primitive functions.

3.3.1. Composition

IFP composition is identical to mathematical composition, except that it is written:

flg

whereas it would be written mathematically as
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gof

Writing composition backwards follows from [FP’s left to right syntax. The vertical bar is
borrowed from UNIX, since composition of functions closely resembles piping between

processes. Composition is defined by the equality:

z:fig=(z:f )9
Composition is associative, so parentheses are neither necessary nor allowed to indicate

association in functions such as:

flglh

3.3.2. Construction

The construction of functions is written as a bracketed list of the functions. For exam-
ple, the construction of functions f, g, and A is written as:

(f.g.h]

and defined by:

z:{f.gh] =<z:f,z:9,2:h>

3.3.3. Constant

The constant PFO creates a constant function. Constant functions always return the
same result when applied to any object that is not ““?”’. Constant functions are written as an

object (the value to be returned) preceded by a pound sign “#". The defining equation is:

cifz=?

zi#e — 9\ oifzay

Ay au s Ny

—

N W .
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3.3.4. Selector

The selector PFO creates selector functions, which behave as constant subscripts. Selec-
tor functions return the nth element of a sequence and are written as n, where n is a positive
integer. There are also a corresponding set of select-from-right functions, written as nr. The

defining equations are:

<zpZy "> :in =z,

L',z >:nr =3z,

3.3.5. Apply to Each

The apply-to-each PFO is a distributive form which applys a function to each element
of a sequence. It is written as
EACH f END
The defining equation is:
<ZZTy ' >: EACH f END =<z;:f ,z0:f, - >
Note that construction and apply-to-each are complementary. The former applies multiple

functions to the same argument, the latter applies the same function to multiple arguments.

3.3.8. If-Then-Else

The if-then-else PFO allows conditional function application. It is written as
IF p THEN ¢ ELSE A END

and the defining equation is:
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[ote) it o)t
z:IFp THEN g ELSE A END — lh(z)ifp(z)=f

? otherwise

The level of nesting of conditional forms may be reduced by using ELSIF clauses. For exam-
ple:

IF p, THEN g,
ELSE
IF p, THEN g,
ELSE
IF p, THEN g,
ELSE &
END
-END
END

can be rewritten as:
IF p, THEN g,
ELSIF p, THEN g,
ELSE A
END;
The “ELSE” part may not be omitted. Where the “ELSE" part is the identity function, it

must be explicitly written as such.

3.3.7. Filter

The filter PFO filters through elements of a sequence that meet a criteria. It is written

as:
FILTER p END
and is defined as:
EACH
IF p THEN (id] ELSE [] END
END | cat

where p is the criteria expressed as a boolean function. For example, to filter a sequence for
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all pairs of equal elements:
<<a a> <¢ d> <y y> <r g>> : FILTER = END =+ <<a a> <y y>>
The filter PFO is an IFP extension to Backus’ FP. Clearly it is not necessary since it could

always be replaced by its definition, but it occurs sufficiently often to merit its inclusion as a

PFO.

3.3.8. Right Insert

The insert PFO reduces a sequence. Its defining equations are:

<>:INSERT f END — 7
<z,>:INSERT f END — z,

<Zy,23, "+ * 22 >: INSERT f END — <z,, <zj, * - z,>: INSERT f END >: f

The name tnsert comes from picturing the PFO as inserting its parameter function between
each element of a sequence, e.g.:
<1 2 3 4> : INSERT + END » 1+2+3+4

with right association.

Functions formed with insert are always undefined for empty sequences. This differs
from Backus’ FP, in which such functions returned the right identity element of the parame-
ter function. In theory, this is a convenient feature (e.g. summing an empty sequence would
yield 0), but it is impractical for the interpreter to know the identity element of user-defined
functions. The number of cases where the interpreter could know the identity element are so
few that we might as well define special functions for those cases, e.g:

DEF sum AS
IF null THEN #O

ELSE INSERT + END
END;
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Alternatively, we can append the identity element to the end of the sequence before inserting,
e.g.:

DEF sum AS
(1d,#0] | apndr | INSERT + END;

Note that insert starts at the right of the sequence. Currently there is no “‘left insert’”’,
which would reduce a sequence starting from the left. We can get the same effect, however,
with insert and the sequexice reversal function:

reverse | INSERT reverse|f END

3.3.9. While

The while PFO is written as:
WHILE p DO f END;
and is defined by the recursive functional equality:
WHILE p DO f END = IF p THEN
[ | WHILE p DQ f END
ELSE 1d
END

That is the while PFO applies the fewest f’s such that z:f:f:f....f:p is true.

3.4. IFP Environment

In the good old days, card decks went in and printouts came out. IFP attempts to pro-
vide a more productive interface. The interpreter presents the user with an environment
similar to UNIX or MS-DOS, depending upon which is the operating system of the host
machine. The UNIX version is discussed here; the MS-DOS version is essentially identical

except for command spellings.
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When it is ready to accept a command, [FP prompts with:
1£p>
The user may edit a source file with any convenient editor. The edit command is the same as
the UNIX command, for example if the editor is ‘“‘vi’’, the user would respond to the “ifp>"
prompt with:
vi foo

where foo is the name of the function to be edited.

To evaluate a function, the user enters the command “show’’ followed by an expression.
For example, the user may enter:
. show <3 4> : [+,-];
and the interpreter responds with:

<7 -1>

Programs rarely work right the first time. Therefore a language implementation should
provide for debugging features. One problem of functional languages is that most debugging
tools (such as traces and dumps) are side effects. Their practical value, however. far
outweighs their blemishing presence. Perhaps truly functional debugging tools can be found

in the future.

3.4.1. Back Tracing

One particularly unfortunate feature of FP’s definition is that functions cannot princ
error messages, but instead return the value bottom, which represents an undefined value.
For example, if the function application:

<1 2 3> : HorribleHaliryFunction
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returns “?"", the user has no idea of which kind of error occurred. It could have been a divi-
sion by zero, subscript out of bounds, or something else, but in all cases the same value is
returned. For example, consider the inner product function application:
<<1 2 3> <4 5 w>> : Inner;
IFP indicates both the reason for the creation of “?”’, the offending argument, and propaga-
tion of the ““?"’ result:
/math/arith/+: not a numeric pair
<3,w>
| | IEXIT> ? : /math/arith/+
| |EXIT> ? : EACH /math/arith/+ END
|EXIT> ? : /sys/trans|EACH .. ENDI/math/arith/sum
EXIT> ? : /tmp/Inner
The functions are printed from their internal representation by an unparser, that is an ela-
borate pretty-printing routine. The dot pair ““..”" is used by the pretty-printer to abbreviate
functions. The nesting level at which the dots occur may be set By the user with the com-
mand:
depth n

where n is the maximum level to be dispiayed. In the above example, the depth is 2; level L is

the compositiony, level 2 is the each PFO, and level 3 is the parameter to each.

3.4.2. Tracing

[FP has two forms of tracing. The first form shows all applications and resuits inside a
function. For example, if we have the function

DEF Mean AS (% Mean of arithmetic sequence *)
(sum, length] | %;

and then enter the commands

tracde on Mean;

oy A ay S =

\
-y A
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show <1 2 3 4> : Mean;

we get

ENTER> <1,2,3,4> : Mean
|[ENTER> <1,2,3,4> : [..,..1]"%"
| |ENTER> <1,2,3,4> : [sum,length]
! | |ENTER> <1,2,3,4> : sum
I | IEXIT> 10 : sum
| | |ENTER> <1,2,3,4> : length
| | |IEXIT> 4 : length
| |[EXIT> <10,4> : ([sum,length]
| IENTER> <10,4> : %
| |EXIT> 2.5 : %

[EXIT> 2.5 : (..,..]!%
EXIT> 2.5 : Mean
2.5

The second form of tracing lets us examine a specific intermediate result. This tracing
is done with the special PFO “@". The function
@string
prints string followed by its argument. Otherwise “(." is an identity function. For example,
if we want to see the argument to “%" in the Mean function, we can write:

DEF Mean AS
{sum,length] | @"Before % in Mean" | %;

When this version of Mean is appliedto <12 3 4>, we get the message:

Before % in Mean: <10 4>
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CHAPTER 4.

Interpreter Design

A language interpreter is simply a program. Programs have two parts: data structures
and algorithms. This chapter describes the IFP interpreter’s data structures and algorithms.
The interpreter is written in CKer’8; therefore examples of the interpreter’s internal workings
are also presented in C. The examples are simple enough that the reader need not be

proficient with C.

4.1. Data Structures

Internally, [FP distinguishes eight types of objects. Each object is a discriminated

union. The object types are:

BOTTOM
BOOLEAN
INT
FLOAT
LIST
STRING
NODE
CODE

Most of the type names are self descriptive. The NODE type is a compressed representa-
tion of a function pathname sequence. (See section 4.1.2.1.) The CODE type contains a

pointer to machine code. It is internal to the interpreter and not directly available to the

user. The representations of the other types are described in subsequent sections.
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4.1.1. Scalar Types

The BOTTOM, BOOLEAN, INT, and FLOAT types all take a small fixed amount of
storage. Each is stored in the machine’s native format. The user can never distinguish the

INT and FLOAT types, so the interpreter may change the representation at any time.

4.1.2. Strings

Strings are atoms in IFP, but require special treatment since they are variable-length
entities. IFP strings are stored as linked lists of segments. Each segment contains approxi-
mately 12 characters. (The exact number is machine dependent.) The first record of the

linked list contains the reference count for the string.

The string representation was chosen for the ability to allocate and deallocate strings
quickly. Compaction of memory is never necessary. With 12 characters per segment and a 4
byte link field, we effectively use 75% of the memory available if internal fragmentation is
not taken into account. On the average, half of the last segment for a string is empty, so the
average internal {ragmentation cost is 8 bytes per string. The strings also ha\;e a reference
count. The intent was to allow conversions of cail-by-value to call-by-reference, but none of

current string operations use this feature.

Very few string primitives are implemented. Most string operations in I[FP are done via
ezplode and implode, which convert a string to a sequence of characters and vice versa. For
example, to drop the first character from a string, we write:

explode | tl | implode
The string representations of single characters reside permanently in an array so that ezplode

can operate quickly.
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4.1.3. Sequences

[FP programs generate many sequences on the fly, so the sequence representation must
allow quick allocation and deallocation of memory. Therefore I[FP sequences are represented
as linked lists. The lists are guaranteed to be acyclic by the definition of FP. That is, no
sequence can ever contain itself as a sequence, so all sequences form trees.

typedef struct ListCell {

" Object Val; /* Element of sequence */
struct ListCell =Next; /* Pointer to next element =/
unsigned short LRef; /* Reference count */

} ListCell;

The one exception in which an indirect cycle does occur is in recursive function

definitions. These cycles are broken, however, when the function name is deleted.

There were two choices for garbage collection: a mark/sweep algorithm or reference
counts. Many of [FP’s sequences are temporarily created by the structural functions. For
the benchmark program in Chapter 6, Berkeley FP spends approximately 25% of its time

garbage collecting with a mark/sweep algorithm. Reference counting was chosen for [FP,

though it is not clear if it is an improvement.

Reference counting introduces the problem of count overflow. With most languages, the

possible solutions are:
1.  Make the reference count field big enough so overflow never occurs.

2. Implement a “sticky’ reference count. Once the reference reaches its limit, it can not

be decremented. A garbage collector must reclaim the storage.

IFP functions do not have side effects. Therefore the sharing of lists does not affect a pro-

gram, and not sharing lists has no effect. Thus we have another solution to the reference
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count overflow problem:

3. Copy the data. Actually, the interpreter just copies the offending node and set its :Vezt
link to the Nezt link of the original node. The whole list does not have to be recopied,

unless every list element’s reference count has reached its limit.

The use of a single type of list-cell is somewhat space inefficient, since each cell must
take up the worst—case space. For example, a boolean value occupies as much space as a
double-precision floating-point number. The advantage of having the generic list-cell is that
we can always replace its value without checking whether it would fit. The generic list—cell
also reduces portability problems, since relative sizes of data types vary for different

machines and compilers.

One way to shrink the list-cell would be to use references instead. For example, a list-
cell holding a floating-point number could contain a pointex; to the number instead of the
number itself. On a typical 32-bit machine, this would reduce a 84-bit floating-point
number to a 32-bit pointer, thus saving four bytes. Since a list-cell occupies approximately
16 bytes, this would yield a 25% saving of list—ceil memory. This scheme would increase the
interpreter’s complexity and memory {ragmentation, since a separate memory space would be
allocated for floating-point numbers. The savings would be machine dependent also. On the
CRAY numbers and pointers are the same size, in this case the reference scheme would take

extira memory.

4.1.4. Functions

Backus FP represents functions as objects. In FP primitive functions are represented by

atoms. For example, the atom trans would represent the transposition function. Functions
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created by PFO!
are represented as sequences: the first element is the PFO name and the rest of the elements
are parameters to the PFO. The [FP interpreter uses the same scheme, except that function

and PFO names are pathname sequences.

For example, the inner product function:
trans | EACH * END | INSERT + END

is represented as:

<sys compose>

<sys trans>

<<sys each> <math arith =>>
<<sys insertr> <math arith +>>

>

Table 1 shows the internal representations of PFO.

PFO Representation

1L

#e < <sys constant > #e >

#? < < sys constant > >

n < <sys select> n>

nr < <L sys select> —-n >

fl:fzi..'fn <<SY5¢°mP°53>yfufz:"'fu>
[fhfzﬁ"'fn] < <sysconstruct>, f,fq " fa>
EACH f END < <3ys each> f>

FILTER p END < <sys filter> p >

INSERT f END
IF p THEN ¢ ELSE A END
WHILE p» DO ¢ END

< <sys ingertr> f >
<<sysif>pgh>
< <sys while> p f>

Table 1

ELSIF clauses are always expanded into equivalent nested [F-THEN-ELSE constructs. The

representation of “#?" is a special case, because the representation < <sys constant> ?> is

‘Program forming operations (PFO) are defined in section 3.3.
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equivalent to “‘?”" by the bottom preserving property.

When evaluating a function application, the interpreter must look up the code
corresponding to the function or PFO pathname sequence. To speed up the search, pathname
sequences are converted to an alternative representation (type NODE) that is a direct pointer

to the function.

4.1.5. Environment

Functions are stored as UNIX files. There is simply a UNIX file tree which corresponds
to the user’s function tree. This is effective as an interpretive environment. The user’s favor-
ite editor can be used to edit a function file. When a change is made, only the file correspond-
ing to the altered function must be read and parsed again, thus speeding up incremental

modification.

The interpreter loads function definitions on a demand basis. Currently there is no
memory release mechanism in the interpreter. Once a function is loaded, it remains resident

until it is modified or the interpreter exits.

Furthermore, the use of UNIX files for function definitions allows the use of UNIX utili-
ties. For example, the user can list directories with the Is, list functions with more, and
search for patterns with grep. Not only does this save the implementor time, but creates a

familiar user interface.

The only problem is that the interpreter must recognize some of the UNIX commands.
Consider the rm command. It will delete a file containing a function. If the function is

already resident in the interpreter, the internal representation must be removed. Therefore
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the interpreter must recognize rm and remove the function from its internal storagé.
‘Currently only the “vi” and “‘rm’’ commands are recognized. In both cases, the internal copy
of the function is removed. (The new version of the edited function will be loaded on
demand.) The “mv” and “cd” commands should also be recognized as special, but are
currently not. (Since [FP forks off UNIX commands, ‘‘cd” only changes the child’s environ-

ment, not that of the interpreter!)

4.2. Algorithms

[FP has a single evaluation operation apply, which applies a function to an object to
yield another object. In [F'P, the application of function fto object z is written as:
z:f
Internally, the interpreter contains the C function:

vold Apply (InQOut,F)
UbjectPtr InOut,F;

The value of *InOuf is replaced by the result of applying function *F to object */nOut.

There are three types of functions:

Primitive Functions

The function is defined by machine code in the interpreter. All primitive functions have

the same format:

vold F_foo (InOut)
ObjectPtr InCut;
{

/* Code for primitive function foo */
}

In C. *p denotes the value peinted to by p. and ZX denotes a pointer to variable X <C uses call-zy-v:
clusively. call-by-reference Ls done by passing i polnter ©o the argument
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To evaluate its application, the machine code is executed with InOut pointing to the

input object. The input object is replaced by the result of the application.

User defined functions
The function is defined by the user. To evaluate its application, the function’s definition

is applied to the argument.

Compound functions
The function is the result of a PFO. The PFO is defined by machine code. To evaluate
the function, the machine code is executed with the PFO’s parameters as additional
arguments. The machine code for a PFO is essentially a control structure which selec-
tively applies the parameter functions to the input. For example, the code for evaluat-
ing function composition is:
Compose (InOut,Funs)

CbjectPtr InOut;
ListPtr Funs;

{
while (Funs != NULL) {
Apply (InQut, &Funs->Val);
Funs = Funs->Next;
>
}

where [nOut is the input to the composition PFO and Funs is the list of functions to be
composed. [nout serves as an accumulator; the code simply traverses the function list

and applies each function to the accumulator.

Note that Apply does not recursively call itself for primitive function evaluation. If we wanted
to convert tail-recursions to iterations, it is only the PFO’s we would have to reimplement;

the primitive functions would remain unchanged.
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The theoretical order of evaluation in FP and the actual order in the interpreter are
quite different. In principle, all PFO’s combine their parameters to create a new function.
The result function is then applied to the object. This is the usual order in mathematics.

For example, to evaluate:

[p. 1))
we first evaluate D, f(z) and then apply f' to the argument 2. The actual evaluation is a
top-down recursive procedure. For example, to evaluate:
<3 5> : EACH ([14,#1]}!+ END;
The following applications occur:
<3,7> : EACH [1d,#1]|+ END
3 : [14d,#1]]+
3 : [14d,#1]
3 :1d
3 #
<3,1> @ +
7 2 [1d,#1] 1+
7 : [1d,#1]
7T . 1d
7 @ #1
7,1> : +
Essentially, Apply is a threaded code interpreter similar to FORTHLce8!, The difference
between [FP and FORTH is in the form of the code and data. FORTH interprets linear code

which specifies transformations of a stack. [FP interprets list-structured code which specifies

transformations of a list.

4.2.1. Conversion of Call-by-Value to Call-by-Reference

The reduction evaluation of FP expressions requires call-by-value arguments. Imple-
menting call-by-value by always copying arguments would be expensive in both time and

space, since FP arguments are often complicated structures. Therefore IFP uses call-by-




reference internally. Since functions cannot modify their arguments, call-by-reference is
indistinguishable from call-by-value. If a function (such as reverse) needs to return a
modified version of its argument, it makes a local copy first. This is analogous to the copy-
on-write scheme for operating systems in which a process image is not copied after a fork

until the parent or child process needs to modify the image.

The internal use of call-by-reference does not eliminate all unnecessary copying. Con-
sider a case of copy-on-write in which the child process wants to modify part of the process
image, but a part which is no longer used by the parent process. An example of this in [FP is
the expression:

X : trans | EACH reverse END
which rotates matrix X 90° clockwise. In a simple interpreter, trans would make a local
cc;py of X and transpose the local copy. The each PFO would then pass each row of the tran-
sposed matrix to reverse. On each application of reverse to a row, it would first make a local
copy of the row, and then reverse the row. The copy operation is redundant, however, since
the row handed to reverse was a local copy already. That is, it doesn’t matter if reverse
alters its argument in this case, since it has sole possession of the argument. The general rule
is: a function may directly modify the section of a list for which the reference counts are all
unity. Statistics for actual I[FP programs show that approximately 20-30% of all list cells

are ‘“‘recycled’ this way rather than created from scratch.

The copy avoidance is simple to implement, it is encapsulated in two procedures:

void CopyTop (A)
ListPtr *A;

void Copy2Top (A)
ListPir *A;
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The former effectively generates a copy of list *A, but doesn’t bother to copy the prefix of the
list with unit reference counts. The latter effectively copies the top two levels of “A. Deeper

copying is not required by any of the primitive functions.

4.2.2. Pointer Rotation

Since garbage collection is done with reference counts, the interpreter must be coded
very carefully. If a reference count is too low, an object' will be prematurely snatched by the
garbage collector. If a reference count is too high, an unreferenced object will never be col-
lected. Of particular hazard are pointers local to a procedure. They are allocated upon pro-

cedure entry, and more importantly, automatically disappear upon procedure exit.

The simplest way to maintain reference counts is to have functions which do the book
keeping. For example, we could initialize all pointers to NULL, and then do all pointer

assignments via the function:

vold RepLPtr (A,B)
ListPtr *A, B;

which would replace pointer *A by pointer B and adjust reference counts appropriately. The
overhead, however, is considerable. Consider the sequence of pointer assignments from a list

reverse routine:

Q =T = NULL;
while (R!=NULL) {
T R;
R = R->Next;
R->Next = Q;
=T

);
R=Q;
Q =T = NULL;

Except for the NULL assignments, all the assignments would have to be done via the

A) A Ty Sn Up G Oy AW e Ay Un A W W Sy & W v -
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RepLPtr operation (if we were strict about using our pointer copying procedure). Note, how-

ever, that the reference counts are actually unchanged once the reversal is done.

In fact, many pointer manipulations conserve reference counts. A frequently occurring
manipulation is potnter rotationS9%80, A pointer rotation cyclicly permutes a set of pointers.
For example, a three-way rotation procedure is:

void Rot3 (A,B,C)
ListPtr *A,*B,*C;
{
char *P;

P = %A; *A = *B; =B = =C; *C = P;
)

A pointer rotation does not modify reference counts. By using rotations as a primitive
pointer operation, most of the reference count modifications can be avoided. For example,

the list reversal procedure can be rewritten as:

Q = NULL;
while (R!=NULL) Rot3 (&R, ZR->Next, 2Q);
Rot2 (2R, 2Q); )

(The Rot2 procedure swaps two pointers.) All the reference counting overhead disappears.
Higher order rotations are also useful, the interpreter even does five-way rotations within the
distribute-left function. (Though the five-way rotation could be replaced by two 3-way rota-

tions.)

4.2.3. Vectorising List Manipulation

For dealing with linked structures the most common memory allocation primitive for
linked structures allocates a single record. An example is the Pascal new procedure. [FP,
however, typically does not work a word at a time. Therefore a faster and more convenient

primitive is implemented:
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vold NewList (A,N)
ListCell =x*A;
long N;
NewList points *A to a fresh list of N cells all set to “?"’; the last cell of the list points to the
old value of *A. That is insert N new cells at the head of list pointed to by *A. To simply get
a list of N cells, *A’s value is first set to NULL. The NewList operation sounds unnecessarily

complex for a primitive, but actually has the important property that it preserves reference

counts.

4.2.4. Expression Cache

Since FP expressions are referentially transparent, evaluating a given expression yields
the same result every time. If an expression occurs twice, the interpreter needs only evaluate
the expression once and remember the resuit. To remember previous results the [FP inter-
preter has an expression cacheX®88, The cache associates an expression (input:function) with

an output value.

The cache is implemented as a hash table. Before an expression is evaluated, it is first
mapped to a hash table index. If the corresponding table entry is full, then the entry’s
expression is compared with the expression to be evaluated. If the two are equal, then the
associated output value is taken from the cache. Otherwise the expression must be evaluated
and the <ezpression,output> association is stored in the cache for future reference. Colli-

sions are resolved by evicting the previous entry from the cache.

The cache lookup speed is limited by the time it takes to hash and compare structures.

Since both these operations take O(n) time® the cache lookup operation takes O(n) time.

30O denotes a lower bound; {2 denotes an upper bound.
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Most of the current primitives take at least 2(n) time.* Since the expressions with primitive
functions can almost always be computed more quickly than accessing the cache, they are
always evaluated, and never looked up in the cache. The interpreter looks in the cache just
for user-defined function applications. Experiments with the interpreter support the above
reasoning: caching of primitive functions slowed the interpreter down by 27-76%. A third
possibility would be to cache expressions involving PFO. This was not implemented, though
the results would probably be the same as for primitives. The real gains from a cache occur

with user—defined recursive functions as described below.

The interpreter may be compiled with or without the cache mechanism. For most pro-
grams, the extra lookup operation slows down the interpreter, but for certain combinatorial
programs the cache can change the program’s asymptotic time. One such program computes

the nth Fibonacci number:

DEF Fib AS
IF (1d,#2] | < THEN 1d
ELSE
subt | (Fib,subl|Fib] | +
END;

(The subl function returns one less than its argument.) Without the cache, the program

1+V5
2

takes time O(¢"), where ¢ is = 1.818.... The reason is that computations form a tree as

shown in figure 3. The tree shows that to compute f{n), the program must first compute
f(n—-1) and f(n-2) The dotted-lines indicate redundant parts of the tree. With the cache,
the interpreter descends the left side of the tree. As the interpreter ascends the left side of the

tree, the result of each right subtree (except f(0)) has already been computed and loaded into

‘The two exceptions are iois and repeaf, which are defined a3 k:iota — <1,2,3,:- k> and
<z k>:repeat — <k repetitions of £ >. Cleariy their execution time is linear in k and independent of the
structural size of their input.
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Figure 3

the cache. The cache dynamically merges the tree’s branches so that the execution time is

O(n).
An interesting phenomena is that the speedup may exceed the cache hit rate. The cache
hit rate is defined as:

number of results found in cache
number of results looked for in cache

In the Fibonacci number case, the left subtree must always be computed, and the right sub-
tree (except f(0)) is always found in the cache. Therefore the the hit rate asymptotically

approaches 50%. The speedup is defined as:
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execution time without cache
execution time with cache

Without the cache, all the nodes in the tree must be evaluated. The recurrence relation for

the number of nodes ¢, in the tree is:

t°=1
tl=l
‘n =tn-l+tn -2+1

From this recurrence it follows that:

<ol
With the cache, the n left-most nodes and f(0) are computed; The n~1 right subtrees of

these nodes are looked up in the cache. The total computation time is 2(n). Thus the

o5

which asymptotically approaches cc even though the hit rate approaches only 50%.

speedup is:

The speedup argument assumes that no collisions occur in the cache’s hash table. The
current hash table contains 1024 entries. The effect of collisions is difficult to assess. Cache
access are far from random; they are dependent upon the function being comp;lted. For the
Fibonacci function only the two most recently evaluated expressions contribute to the next
expression, so no significant collisions occur. If these fortuitous circumstances did not exist,
then the analysis is much more complex. A sketch of one possible analysis follows. Suppose

that:

p = cache miss rate = 1—-cache hit rate

_ _ time for addition
time for cache lookup

The average execution time ¢, for evaluating f(n) is the weighted average of two possibili-

ties: either f(n) is in the cache, or f(n) must be computed from f(rn—1) and f(n-2). The
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recurrence is:
to = (1—p)+pe
ty = (1—p)+pe

ta =(1-p) +p [tn-l+tn—2+°]
The roots of the homogeneous characteristic equation are:

p£Vpi+ap
2

Taking r, as the larger root, the asymptotic approximation of ¢, takes the form:

T =

t, =0 {"1" }
for r,>1. In the perfect situation, the cache miss-rate approaches 0.5. Suppose that collisions

cause the cache miss-rate to rise to 0.6. Then the average execution time is:

t, = 0[1.130..."]
Though not linear, the time is still asymptotically better than the time for uncached evalua-
tion, O [1.818..." ] This analysis, however, assumes constant and independent cache-miss pro-

babilities, which is known, as mentioned earlier, to be a false assumption for the Fibonacci
function. Therefore applying similar logic to other combinatorial programs is an estimate

only and may not be realistic.
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CHAPTER 5.

IFP Example Programs

This chapter presents some [FP programs. The programs are selected to demonstrate the

power and elegance of functional programming and the [FP notation.

5.1. Tangent

The tangent of an angle is the quotient ;)f its sine and cosine. An IFP tangent function
is shown in listing 1. Comments are delimited by ‘“(*”” and “*)”’. Note that the independence
of the sine and cosine calculations is explicit in [FP. The sine and cosine can be calculated in
any order, or in parallel. Furthermore, the program expresses the computation without

intermediate variables.

Tangent

Compute the tangent of an angle expressed in radians.

* # ¥ ¥ *

E.g. 0.7854 : Tangent -> 1
*)
DEF Tangent AS [sin,cos| | %;

Listing 1




38

5.2. Greatest Common Factor

The greatest common factor of two positive integers can be defined recursively:

a ifa=b
gef (a,b) = { gef (a—=b,b) ifa>b
gef (b—a,a) if a<b

An IFP translation of these equations is show in listing 2. Since program is tail recursive, it

may be transformed with the while PFO into the program shown below.

DEF gcf AS
WHILE ~= DQ
IF > THEN id ELSE reverse END |
(-.2]
END | 1;
(The function ~== test for inequality of two objects.)

(*
* gef
* .
* Compute greatest common factor of a numeric pair.
®
* Example:
* <144 128> : gcf -> 16
)
DEF gef AS
IF = THEN 1
ELSE
IF > THEN id ELSE reverse END |
[“12) | gef
END;

Listing 2
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5.3. PowerSet

The powerset of a set is the set of all subsets. The powerset may be recursively defined

PowerSet({}) = {{}}

PowerSet({z }|_jS) = U [T,{z }UT}
. TePowerSet(S)
These equations translate almost directly into the FP program in listing 3.

~—
*

PowerSet

The PowerSet function generates all subsets of a given set.
Sets are represented as sequences of distinct elements.

Examples:
<> : PowerSet -> <<>>

<a b ¢> : PowerSet -> < <ab,e>,<a,b>,<a,c>,<a>,<b,e>,<b>, <>, <>>

PR N SRR NN R R B B

)

DEF PowerSet AS
IF aull THEN (id]
ELSE
(1, tl | PowerSet] |

distl ! EACH apndl END,

2
| 1 cat

Listing 3
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5.4. QuickSort

Hoare's quicksort algorithm partitions a sequence by comparing each element against a
chosen element. Two subsequences are formed: one subsequence contains all elements less
than the chosen element, and the other subsequence contains the remaining elements. The
two subsequences are then sorted recursively and the sorted subsequences are catenated. Of
course the case of two or fewer elements in the input sequence is trivial: the algorithm sin}-

ply returns the input sequence.

To simplify the algorithm’s symmetry, the IFP program in listing 4 partitions the
sequence in subsequences of elements less~-than, equal-to, and greater-than the chosen ele-
ment. The IFP program expresses the quicksort idea (partitioning on a key) without the

complex memory shuffling required by word-at-a~time languages such as Pascal.
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QuickSort

DEF QuickSort AS

Sorts a sequence of numbers into ascending order using quicksort algorithm

Eg. <3 26458 0> : QuickSort -> <0 23456 8>

IF {length,#2] | < THEN id (* Check for trivial case *)

ELSE
lid,1] | distr

FILTER

FILTER

FILTET
| | cat

END;

]
I

<

~
-~

END
END
END

(* Distribute partition key over sequence *)
EACH 1 END | QuickSort, (* Sort lower partition *)

EACH 1 END,
EACH 1 END | QuickSort  (* Sort upper partition *)

Listing 4
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CHAPTER 8.

Performance

8.1. Speed

This section compares the execution speed of the IFP interpreter with the Berkeley FP

interpreter and conventional von-Neumann languages.

8.1.1. Illinois FP vs. Berkeley FP

The LU decomposition program in appendix C was run on both interpreters. Two times
were computed for each interpreter: load and execution. The load time includes reading
source files and parsing, which is overhead independent of the number of executions of the

program. The execution time is the additional time required for each execution of the pro-

gram.

The load and execution times were computed from a linear regression. The interpreters
were started and the benchmark program run n times before exiting the interpreter. A linear

regression on the total time vs. n yield the load and execution times as the Y-intercept and

slope respectively.

The benchmark results are shown in table 2. All times are in seconds. The Berkeley FP
does not interpret FP directly, but translates it into LISP. The LISP may be compiled with
the Liszt LISP compilerFo483, The resulting code still ran much more slowly than the IFP

interpreted code as shown in table 3.




43
Interpreter Load (sec) Execute (sec)
Berkeley FP 4.2 68 119
[linois FP 0.4 0.90 3.18
ratio 75.6 37.4
Table 2
Code Compile Time (sec) Load (sec) Execute (sec)
Berkeley FP 4.2 (compiled) 138.5 4.7 90
Illinois FP 0.4 0 0.90 3.18
ratio - 5.22 28.3
Table 3

Comparing relative code sizes of the FP interpreters is difficult. Table 4 lists the
approximate source and object sizes of the interpreters. The executable file for Berkeley FP
is actually 770k, but the Berkeley FP interpreter is built on top of FRANZ Lisp, Fod83 and
thus most of the interpreter ("639k) is actually the LISP interpreter. Of the remaining 131k,
approximately 16% collects statistics. Thus the other 84% (110k) gives about the same func-
tionality as [FP. The Illinois FP executable file is 42k. For the source line counts, each
source was stripped of comments. In the case of FRANZ lisp, the statistics package source

was omitted.

Interpreter  Source Language Source Lines  Object Size

Berkeley LISP 1900 110k
[llinois C 4700 42k

Table 4
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6.1.2. Illinois FP vs. von—-Neumann Languages

The IFP interpreter was also compared against interpreted BASIC and compiled Pascal.
The LU decomposition benchmark was rewritten in BASIC and Pascal. The IFP and BASIC
versions in appendix C were run on an IBM PC/AT with the MS-DOS operating system.
Both the IFP and BASIC programs were loaded into memory before execution. The resulting

times are shown in table 5.

Interpreter  Execution Time

BASIC 9.6 sec

IFP 11.0 sec

ratio 0.87
Table 3

That the [FP version runs only 13% slower than the BASIC version is remarkable. The
BASIC code has several significant advantages. The BASIC interpreter is presumably written
in assembly language. the BASIC program takes advantage of it’s von-Neumann model by
computing the LU decomposition in place. Furthermore, the BASIC version avoids comput-
ing or using the zeros implicit in L and U, thus saving operations. The IFP interpreter is
written in C. The [FP program (see appendix C) does not compute the LU decompesition in
place, computes the implicit zeros in L and U, and computes the subexpression Atk twice as
often as its BASIC counterpart, since L and U both cail Ai. Evidently the redundant com-

putations are not a serious impediment.

The benchmark of [FP against BASIC shows that IFP is not the terribly inefficient
language it might appear to be. On first inspection, the [FP structural functions distl, distr,
and trans seems inefficient compared to the use of array subscripts in BASIC. In an inter-

preter, however, the FP structural functions have the advantage that they need only be
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interpreted once per application. The corresponding BASIC subscripts must be interpreted
each time through the loop. For example, the IFP code:
(A,B] | trans | EACH = END

would be correspond to the BASIC code:

100 FOR J=1 TO N

110 CWJ) =AW = B

120 NEXT J
Each time through the loop each variable reference and subscript must be interpreted. Some-

one once noted “software slows down hardware.” Here we find "variables slow down

software!” This problem also occurs in compiled code, in which the hardware is interpreting

an instruction stream. Vector machines such as the CRAY X-MP! essentially have instrue-

tions which combine a distl, distr, or trans with a subsequent each PFO.

Of course a compiler can remove the interpretive overhead. The times for the LU
decomposition on a VAX for Pascal and [FP are shown in table 6. The Pascal program was

compiled by the “pe’’ compiler with the optimizer turned on.

Language ~ Method Compile Load  Execute
[llinois FP  interpreter - 0.90 3.18
Pascal compiler 4.2 0.11 0.12
ratio - 8.2 26.5

. Table 8

8.2. Portability

The choice of C for writing the interpreter was quite beneficial. Not only is the inter-

preter fast, but it is portable to many different machines. Table 7 lists machines to which

CRAY X-MP is a trademark of CRAY RESEARCH, INC.
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[FP has been ported. In most cases, only a few machfne—dependent global constants (e.g

word size) must be changed to port the interpreter.

Machine Operating System

CRAY X-MP CTSS
Pyramid 90x 4.2 BSD UNIX
IBM PC/RT 4.2 BSD UNIX
VAX 11/780 4.2 BSD UNIX
IBM $9000 XENIX

[BM PC/AT XENIX

IBM PC MS-DOS

Table 7
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CHAPTER 7.

Conclusion

The IFP interpreter meets its original specification. The interpreter provides a simple

environment for writing, debugging, and executing functional programs.

The choice of C for writing the interpreter was quite beneficial. Not only is the inter-
preter an order of magnitude faster than its LISP counterpart, but it is portable to many tar-

get machines.

IFP needs much more sophisticated data types. Currently, IFP could be described as a
functional ALGOL-60. In particular, a record type and the corequisite accessing functions are
needed. Taken further, the interpreter could include data-encapsulation features, which

would allow for functional object—oriented programming.
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APPENDIX A.

IFP Grammar

Character Set

[FP uses the ASCII character set. Upper and lower case letters are distinct.

Tokens

IFP’s scanner is context sensitive. The context is determined by the parser. Tokens are
the longest sequence of characters not containing a delimiter. Atoms are delimited by
space , < > | [ | () ; : tab newline
and function names are delimited by:
space , [ | () | 3 : / tab newline
Comments are delimited by ““(*"" and “*)"’ as in Pascal, and are lexically equivalent to spaces.
The delimiters for atoms and functions differ so that the comparison functions can be written

“LM UST “> = and “<=""; angle brackets within objects delimit sequences.

Strings may be in single or double quotes. Strings not quoted must not contain atom
delimiters. Strings which look like other type atoms must also be quoted. That is the strings
“t”’ and “f” must be quoted to distinguish them from boolean atoms; strings of digits must

be quoted to distinguish them from numeric atoms.

[FP reserved words are always in upper case. The reserved words are:
AS DEF DO EACH ELSE ELSIF

I[F INSERT FILTER THEN WHILE
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Productions

Table 8 shows the EBNF Wir?7 5roduction rules for IFP definitions. The Representation

production simply allows the user to invoke the IFP parser to create object representing a

function. The object created by Representation is the internal form of the function as

described in section 4.1.2.1. For example, writing

#(EACH reverse END)

is the same as writing;:

#<<sys each> <sys reverse>>

Def — ‘DEF’ String ‘AS’ Comp ¢}’

Comp — Funection |} ¢}’ Function |

Function — Conditional | Constant | Construction | Debug | Each |
Filter | Insert | Pathname | Select | While :

Conditional — ‘IF’ Comp ‘THEN’ Comp | ‘ELSIF’ Comp ‘THEN’ Comp | ‘ELSE’ Comp ‘END’

While — ‘WHILE’ Comp ‘DO’ Comp ‘END’ :

Select — UnsignedInt [r] :

[nsert — ‘INSERT’ Comp ‘END’

Each — ‘EACH’ Comp ‘END’

Filter — ‘FILTER’ Comp ‘END’

Debug — ‘(w’ Object

Constant — ‘#’ Object

Construction — ‘' [Comp {*,’ Comp}| ‘|’

Pathname — [‘/’] String |‘/’ String}

Object — Bottom | Atom | Sequence | Representation

Representation —  ‘(’ Comp ¢)’

Sequence —» ‘<’ [Atom {‘, Atom || ‘>’

Bottom — ‘o

Atom — Number | String | Boolean

Number — Integer [ ‘.’ [digit} ‘e’ Integer||

Integer — [“+’1*~’] UnsignedInt

UnsignedInt — Digit {Digit}

Digit — 0/1!/2/3/4/5/6!718!9

Boolean — ‘@

String — ' { character } '! " | character | " ! ! character |

Table 8
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Table 9 shows the productions for [FP import files. A typical import file is shown in
listing 5. Imported function names must not conflict with other functions either local or

imported to the module.

ImportFile — | Import |
Import — 'FROM’ Pathname 'IMPORT’ String | ’,’ String | '}’

Table 9

FROM /sys IMPORT
apndl, apndr, cat, distl, distr, explode, 1id, implode,
lota, length, pick, repeat, reverse, tl, tlr, trans;

FROM /math/arith IMPORT
+, -, *, %, addl, arcsin, arccos, arctan,
cos, div, exp, 1ln, mod, min, minus, max,
power, sin, sum, sqrt, subi, tan;

FROM /math/loglc IMPORT

=, "=, >, £, >=, <=, 7, and, all, any, member, null, or;

Listing 5

Table 10 shows the productions for [FP interpreter commands. for the UNIX version of
[FP; the MS-DOS version is quite similar. The variable Editor is the name of the user’s edi-

tor. UnizCommand may be any UNIX command on the host system.

command -> ‘show’ Object ‘:’ Comp |
‘trace’ ( ‘on’ | ‘off’ ) Pathname | ‘,’ Pathname } |
‘depth’ UnsignedInt |
‘‘m’ Pathname |
Editor Pathname |
UnixCommand |

Table 10
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APPENDIX B.

Differences between IFP and Backﬁs’ FP

Domain

Backus’ FP has two types of atom, the string and the empty sequence. [FP atoms do
not include the empty sequence. [FP include numbers and truth values as atoms distinct
from strings.

Functions

There are many new primitives.

Functional Forms

Backus’ FP defines the INSERT form for empty sequences as returning u,, the right

identity element of f. [FP defines INSERT as returning “?’’ for empty sequences.

[FP has a new functional form, FILTER, which is described in section 3.3.7.

Syntax

The [FP syntax is designed to facilitate indentation and comments. All functional
forms bracket their parameters, so no parentheses are necessary to indicate association.
Table 11 shows the syntactic diﬂ'erencés between Backus’ FP and [FP. Backus’ functions
occupy a flat name space. [FP functions are arranged in a tree structure and referenced by

pathnames, which are lexically scoped.
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Backus [FP

CoBoA AlB|C :
p—f;g [F p THEN f ELSE g END
p—f; q—g; h [F p THEN f ELSIF q THEN g ELSE h END
af EACH f END

/f INSERT f END

(while p ) WHILE p DO f END

(bu £ x) lid, ] | /

/ #f

Deff=x DEF f AS x;

) <>

ppd ?

Table 11
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APPENDIX C.

Benchmark Program

Listing 4 is the program used to compare execution speeds of the Berkeley and Illinois
FP interpreters. The program computes the LU decomposition of a matrix, and then com-
pares the product of LU with the original matrix. The difference should be 0, though due to

rounding errors it is approximately 10-2%.

(*
* Compute LU decomposition of matrix A, then take sum-square-error
* between LU and A.
*)
DEF BenchMark AS
Al [[L,u] | MatMul,id] | MatSub |
cat | EACH (1d,1d] (= END | INSERT + END;

(=« L part of LU decomposition of matrix =)

DEF L AS
IF Singleton THEN #<<1.0>>
ELSE
C
L11,
Alk | [EACH #0 END,L] | apndl
1 | ApndlCel
END;
(* U part of LU decomposition of matrix *)
DEF U AS
IF Singleton THEN 1d
ELSE
C
Ulk,
Alk | [EACH #0 END,U] | ApndlCol
] | apndl
END;
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(* Tall of matrix after gaussian elimination on 1|1 *)
DEF Ailk AS

L
MatTall,
(L111tl,Ulk|tl] [Quter
] | MatSub;

(* First column of L part %)
DEF Li1 AS [EACH 1 END,1l|t] | distr | EACH % END;

(= First row of U part x)
DEF Uik AS 1;

(= Append column (1) to left side of matrix (2) %)
DEF ApndlCol AS (i,2ltrans] | apndl | tranms;

(* Inner product *)

DEF Inner AS
trans | EACH = END |
IF null THEN #0O
ELSE INSERT + END
END;

(* Matrix multiplication *)
DEF MatMul AS
[t,2/trans]" |
discr |
EACH distl |
EACH Inner END
END;

(* Matrix subtraction =)
DEF MatSub AS MatCat | EACH EACH - END END;

(* Converts pair of matrices to matrix of pairs %)
DEF MatCat AS trans | EACH trans END;

(* Deletes first row and column of matrix *)
DEF MatTail AS tl | EACH tl END;

(* Quter product of two vectors x)
DEF Quter AS Cart | EACH EACH * END END;

(= Cartesian product of two vectors *)
DEF Cart AS distr | EACH distl END;
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(* Check if square matrix 1s a singleton =)
DEF Singleton AS [length,#1]l|=;

(= Input Matrix *)

DEF A AS

#<
< 2.3 4.7 -2.7 5.7 7.4 2.112.7 1.132.1 4.5 1.1 8.3
<1.7 -1.7 5.2 3.2 1.23.5 2.4 2.9 1.9 1.7 -4.5 -9.9>
<8.1 3.4 1.210.8 2.9 1.7-1.1-0.3 1.2 3.2 1.8 1.3
<23.3 -9.7 2.4 5.2 7.6 1.186.2 1.7 3.2 9.7 1.2 87.1>
<1.2 3.4 45 8.7 9.80.1 2.1 5.7 -9.1 -5.2 0.2 1.7>
<12.3 1.2 8.7 12.3 -4.7 -.1 3.2 2.1 4.3 1.8 1.9 2.3
< 5.7 4.7 -2.8 5.7 7.4 2.112.7 1.1 32.1 4.5 1.1 8.3
<1.7 -6.7 5.6 7.4 1.2 3.5 2.7 2.8 1.9 1.7 -4.5 -9.9>
< 3.1 -3.4-9.210.6 8.91.7-1.1-0.3 3.2 3.2 1.8 1.3
<13.3 -8.7 5.2 7.6 1.186.2 1.3 3.2 9.7 1.287.1 -9.2>
<1.2 3.4-4.5 -6.7 9.80.1-2.1 5.8 -9.1-5.2 0.2 1.7>
<12.3 1.2 -8.7 12.3 -4.7 -.1 -3.2 1.8 1.9 2.3 3.1 4.3

>;

Listing 4

Listing 5 shows a BASIC version of the LU decomposition. [t calculates the LU decom-
position of matrix A in place, i.e. after the decomposition L is in the lower triangle of A and
U is in the upper triangle of A. The diagonal of 1’s in L is implicit. Since [FP computes in

double precision, the BASIC program also computes in double precision.

100 REM LU DECOMPOSITION BENCHMARK
110 DEFINT I,J,X,N

120 DEFDBL A,D,S

130 LET N=12

140 DIM A(N,N),A1(N,N),A2(N,N)

150 REM READ MATRIX A (AND SAVE IN A1 FOR LATER USE)
160 FOR I=1 TO N

170 FOR J=1 TO N

180 A(I,J)=RND

190 AL(I,D) = A(I, D)

200 NEXT J
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210 NEXT I

. 220 REM COMPUTE LU DECOMPOSITION IN PLACE
230 FOR J=1 TO N

240 FOR I=J+1 TO N

250 A(I,]) = ACT,0) / AQJ,DD

260 FOR K=J+1 TO N

270 A(ILK) = A(L,K) - A(I,J) * A(J,K)
280 NEXT K

290 NEXT I

300 NEXT J

310 REM MULTIPLY L AND U, PUT PRODUCT IN A2
320 FOR I=1 TO N
330 FOR K=1 TO N

340 S=0

350 IF I>KTHEN M=K ELSE M = I

360 FOR J=1 TO M

370 IF I=J THEN S = S+A(J,K) ELSE S=S+A(I,J)*A(J,K)
380 NEXT J

390 A2(I,K)=S

400 NEXT K

410 NEXT I

420 REM COMPUTE SUM-SQUARE ERROR IN S

430 S=0

440 FOR I=1 TO N
450 FOR K=1 TO N

460 D = A1(I,K) - A2(I.K)

470 S=8+D=*D

480 NEXT K -

490 NEXT I

500 PRINT S

510 END

520 DATA 2.3 4.7 -2.7 5.7 7.4 2.1 12.7 1.1 32.1 4.5 t.1 8.3
530 DATA 1.7 -1.7 5.2 3.2 1.23.5 2.4 2.9 1.9 1.7 -4.5 -9.9
540 DATA 6.1 3.4 1.2 10.86 2.91.7 1.1 -0.3 1.2 3.2 1.6 1.3
880 DATA 23.3 -9.7 2.4 5.2 7.6 1.188.2 1.7 3.2 9.7 1.287.1
560 DATA 1.2 3.4 4.5 6.7 9.80.1 2.1 5.7 -9.1 -5.2 0.2 1.7
570 DATA 12.3 1.2 8.7 12.3 -4.7 -.1 3.2 2.1 4.3 1.8 1.9 2.3
580 DATA 5.7 4.7 -2.8 5.7 7.4 2.1 12.7 1.1 32.1 4.5 1.1 8.3
590 DATA 1.7 -6.7 5.8 7.4 1.23.5 2.7 2.8 1.9 1.7 -4.5 -9.9
600 DATA 3.1 -3.4 -9.2 10.6 8.9 1.7 -1.1 -0.3 3.2 3.2 1.6 1.3
610 DATA 13.3 -9.7 5.2 7.8 1.1 86.2 1.3 3.2 9.7 1.287.1 -9.2
620 DATA 1.2 3.4 -4.5 -6.7 9.8 0.1 -2.1 5.8 -9.1 -5.2 0.2 1.7
630 DATA 12.3 1.2 -8.7 12.3 -4.7 -.1 -3.2 1.8 1.9 2.3 3.1 4.3

Listing 5
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Of course, the BASIC program might be recoded more efficiently, but the IFP program
could also be recoded more efficiently. In the case of IFP, the recoding can be done rigorously
via algebraic theorems. For example, the Aik function is called twice per iteration, once by L

and once by U. If we define a new function LU and substitute the definitions of L and U we

get:
DEF LU AS
l
IF Singleton THEN #<<1.0>> (* definition of L *)
ELSE
C
L1i1,
Alk | (EACH #0 END,L] | apndl
1 | ApndlCol
END,
IF Singleton THEN id (* deflnition of U *)
ELSE
C
Uik, :
Alk | [EACH #0 END,U] | ApndlCol
1 | apndl
END .
1;

Applying the algebraic rules, we finally get:

DEF LU AS
IF Singleton THEN [#<<1.0>>,1d]
ELSE
(
Lit,
Alk| [EACH #0 END,LU],
Utk
11
C
(
1' -
2 | [1,2]1] | apndl
1 | ApndlCol,
(
3!

2 | [1,212] | ApndlCol




58

] | apndl
]
END;

which runs 1.5 times as quickly as the separate L and U functions.
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